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Abstract 

This paper describes the formal specijication and devel- 
opment of a separation kernel. The Mathematically Ana- 
lyzed Separation Kernel (MASK), has been used by  Mo- 
torola on a smartcard project, und as part of a hardware 
cryptographic platform called the Advanced INFOSEC Ma- 
chine (AIM). Both MASK and AIM were jointly developed 
by Motorola and the National Security Agency (NSA). 

The paper will begin by describing the separation kernel 
concept and its importance to information security. Next it 
will illustrate the SPECWARE formal development method- 
ology used in the development of MASK. Experiences and 
lessons learned from this formal development process will 
be discussed. Finally, the results of the MASK development 
process are described, project successes are discussed, and 
related MASK research is highlighted. 

1. Introduction 

In 1993 an informal separation kernel working group 
was established to study a new model called the separation 
kernel paradigm. The separation kernel paradigm was orig- 
inally proposed in the 1980’s by John Rushby [ 5 ] .  It was 
investigated as an approach to replace the traditional secu- 
rity kemel [ l ]  concept of the Orange Book [3]. While the 
separation kemel concerns itself with only two functions, 
namely, iilformationJlow and data isolation, traditional se- 
curity kemels implement all of the functions specified for a 
given level of certification in the Orange Book. 

One problem with past implementations of the security 
kernel paradigm was that application specific procedures 
and processes always found their way into the kernel and, 
consequently, into the trusted computing base. In the secu- 
rity kernel paradigm, the trusted computing base grows and 
eventually consumes a large portion of the system. The rea- 
son this happens in the security kernel paradigm is that the 
kernel and the trusted computing base are both unwilling to 
share the security burden with the application. 

In contrast, the separation kernel empowers the appli- 
cation with the ability to define complex security policies 
and then provides the application the ability to enforce those 

policies itself. This is done by strictly enforcing an informa- 
tion flow policy between application components, which, in 
tum, ensures that critical components are not bypassed. 

MASK is an implementation of the separation kernel 
paradigm. Developed using the SPECWARE formal method- 
ology, MASK achieves a high assurance of separation. 
Moreover, MASK is currently being considered for submis- 
sion for common criteria EAL7 [2] certification. 

2. Separation kernel concept 

Operating system research has concentrated on organiz- 
ing basic operating system functions into a collection called 
a kemel. The kemel presents abstractions of the fundamen- 
tal resource management mechanisms to other, less prim- 
itive, service providers. In operating system implementa- 
tions that attempt to provide a basis for secure information 
processing, the kemel software is carefully constructed and 
evaluated. To aid the evaluation process, the kernel func- 
tions are implemented as relatively small programs that are 
independent of one another. 

A separation kernel is charged with the critical task of 
providing separation among process spaces by manipulat- 
ing the protection features of the system. A separation ker- 
nel creates “an environment which is indistinguishable from 
that provided by a physically distributed system.” [5] The 
environment within the parallelogram of figure 1 depicts 
separation in a physically distributed system. 

This view becomes somewhat more clouded when the 
functionality of these boxes and arrows is implemented in- 
side an environment in the context of an operating system 
and hardware. Figure 1 is its entirety provides a view of 
this context and the possibilities of unintentional informa- 
tion flow due to the platform substrate. For example, while 
Box 4 should not be able to communicate to Box 1, the sub- 
strate allows information to pass from Box 4 to Box 1, as 
noted by the arcing arrow. This type of information flow is 
often referred to as a covert channel. That is, a mechanism 
which is used to establish communication between two en- 
tities, where the mechanism was not intended to be used for 
communication. 

Naturally, separation kemels are desirable because they 
enforce the policy of restrictions on communications. These 
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Figure 1. Potential covert channel 

concerns are becoming more prevalent as networking of 
resources intensifies. For instance, there are many pro- 
grams within the government which combine communi- 
cations functionality implemented on physically separate 
boxes into a single communications device, exactly the sit- 
uation introduced above. The resulting communications de- 
vice requires a high degree of separation between the com- 
munications channels, since these channels may have dif- 
ferent security levels and inherent separation requirements. 
Thus miniaturization of communications devices is an im- 
portant stimulus for the separation kemel concept. 

In addition, the following are benefits of the separation 
kemel: 

Precise translation of the logical architecture into a 
physical implementation. Because the separation kemel 
completely separates processes, it provides a faithful physi- 
cal implementation of a logical architecture. 

Fail safety. When two processes have unintentional, 
and often unknown, interactions, it is not possible to con- 
sider the error properties of one process in isolation. Errors 
in one process may propagate to others. Indeed, this in- 
terdependency makes it difficult or impossible to determine 
the fail safety of the system. 

Availability. When processes are truly independent, it 
is possible to provide independent backups and check pro- 
cesses for a critical function. 

SecuriQ. A classical security property is r e a l a c k  
separation on a cryptographic device. When processes have 
unintentional communications, it is not possible to conclude 
that red processes may communicate to black processes 
only via a cryptographic process. However, if the system is 
implemented on a separation kemel, by a simple inspection 
of the system architecture diagram, it is possible to conclude 
that red processes communicate with black processes only 
via a cryptographic function. 

3. Realization of a separation kernel 

The principle abstraction for MASK is the cell. A cell 
is a domain of execution, or a context, and a collection of 
strands. Cells have globally unique CellIDs, and strands 
have globally unique StrandIDs. Each strand is a stream 

of instructions to be executed when a message is input 
to a strand of a cell. These abstractions, and their inter- 
relationships, are illustrated in figure 2. 

The context of the cell consists of memory segments, 
permanent and transient, defined by a starting address and a 
length. Additionally, each cell can execute only one strand 
at a time. In figure 2,  CellB is currently not executing any 
strand. It will begin execution some time after it is granted 
access to a message from Cell.4 bound for Strand?. When 
the strand of the cell is launched, the cell receives access 
to the message segment(s) that make up the input message. 
The cell may also require scratch segments to process the 
message. The cell can dispose of transient segments either 
by sending them in a message to another cell, or by sus- 
pending. The substrate under the cell layer will ensure that 
when the cell suspends, access to all transient segments is 
removed, leaving the cell in its base state of having access 
only to its permanent segments. 

Each strand is “run to completion.” This means that the 
strands on the same processor do not preempt each other. 
The only exception is that an interrupt strand is run immedi- 
ately upon receipt of the interrupt. Thus a strand’s execution 
may be interleaved with the execution of interrupt strands. 

Finally, a cell interfaces to its extemal world (hardware 
and other cells) only through the substrate. An example 
of cell interfaces, is illustrated in figure 2. In this figure, 
Strands of CellA is running. First, the strand is launched 
by the kemel, at which time the strand is given access to 
its message segment(s) and scratch segment(s), by the ker- 
nel. After more of the thread of execution is consumed, the 
strand uses the Send interface to send a portion of its tran- 
sient segments to Strand4 of CelfB. CellA loses access to the 
segments transmitted at the time it uses the Send interface. 
The next interface used by Strands of CellA is the Throw 
interface, causing an exception condition. This terminates 
execution of Strands of CellA, and causes the Handler func- 
tion to be run. When Strands of Cell.4 terminates, the kemel 
removes access to all of the transient segments remaining in 
CellA. If Strands of CellA had not terminated by the excep- 
tion condition, it  would have reached the end of its strand, 
where it calls the Terminatestrand interface. This interface 
terminates the execution of the strand, at which time the ker- 
nel removes access to any transient segments still accessible 
to the cell. 

3.1. Separation concept 

This section describes two of the key axioms of the sep- 
aration concept, so that the reader gets some feeling for the 
notion of an abstract specification, having only properties of 
the desired system, but no details of the system. The com- 
muting diagram in (1) depicts the fundamental sorts and op- 
erations that define the system to be considered, the evolu- 
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Figure 2. MASK cells 

tion of the system over time, the subjects of the separation 
policy in the system, and the identification of the subjects 
of the system. These concepts are: 

0 System: Multiple Cell Abstraction (MCA) 
0 System Evolution: The lnit and' Next operators, pro- 

0 Subject: Cell or Single Cell Abstraction (SCA) 
Identification: CellID 

ducing all possible multiple cell abstractions. 

Next 
M C A l  MCA2 

Fiber, 1 I ( 1 )  
Fiber, 

SCAC, SCAm 

Fiber, o Next, = FiberNext 0 Fiber, 

The Fiber function is displayed in its curried form, i.e. 
as a subscripted function from MCA to SCA. The curry 
operation takes a function of two arguments, such as Fiber, 
and produces a family of functions of one argument, such 
as Fiber,. There is one Fiber, for each CellID c. Each 
function Fiber, determines the SCA corresponding to the 
CellID c in the subscript. 

The operators lnit and Next are specified to be the con- 
structors of the MCA. This means that all possible MCA 
states are the result of system initialization, and the ad- 
vancement of the system state one step at a time by the Next 
operation. This specifies that the system cannot land in any 
"unspecified" states that might not satisfy the security con- 
straints. The only possible states are arrived at using lnit 
and Next, which obey all of the axioms of the specification. 

There is a similar constraint upon the SCA, stating that 
any SCA must be the result of a Fiber operation on an MCA. 
Since the MCA is constrained to be in valid states, as con- 
structed by Init and Next, this constrains the SCAs to be in 
valid states resulting from taking a Fiber of a valid MCA. 

The axiom associated with the commuting diagram is 
shown in (1). This axiom equates the result of applying 
the functions along the two paths from MCA 1 to SCA,, . 

This equation also introduces the Next and FiberNext 
operators. The Next operation advances the state of the 
system (the MCA), while the FiberNext operation advances 
the state of a single cell within the system. Similar to the 
Fiber function, Next requires two arguments, the system 
state (MCA), and the CellID of a cell. Next, is the curried 
form of Next, i t  advances the system state by advancing the 
cell indicated by the subscript c. 

In simple terms, what this equation is saying is that when 
the system state is advanced by one step, the change in the 
system state corresponds to a change in the state of one of its 
cells, as identified by the Fiber function. If you look at the 
system state before advancing it one step, and then look at it  
after advancing it one step, then there will be a unique cell c 
accounting for this advance in the state of the system. This 
cell c accounts for the advance in the state of the system by 
advancing its own single cell state by one step. 

This equation ties in the Fiber function with the Next 
function. Without this tie, there is no guarantee that (for 
example) Next might not interchange two fibers, resulting 
in confusion. In summary: 

0 The Fiber function must choose a portion of the sys- 
tem state (the multiple cell abstraction) corresponding to the 
CellID. 

The portion of the system state chosen must be trans- 
formed in a way that makes sense with the Next and 
FiberNext operations. 

3.2. Separation axioms 

The first separation axiom, or communication policy, 
describes which cells are permitted to communicate with 
which other cells. Since the communication policy refer- 
ences the concept of a cell, i t  is logical that the statement of 
the communication policy should reference the definitions 
of the Next and Fiber functions. Indeed, one purpose for 
separating the system into cells is to restrict communica- 
tions. Figure 3 depicts the axiom for the communication 
policy in the MASK system. 

(2) shows the communication policy axiom in its contra- 
positive form. It states that if the fiber of cell y changes as 
the result of advancing the state of cell 2, it must be the case 
that z is permitted to communicate with y. 

Fiber,( MCA) # Fiber,( Next,( MCA))  
j Communicates(z, y) ( 2 )  

When the MASK kemel is elaborated in the cell level 
specifications, a particular consequence of the communica- 
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Figure 3. Fibration and communication 

tion policy axiom is that cell z can send messages to :y only 
if cell z has permission to communicate with y. 

The second separation constraint upon cells is depicted 
in the (non-commuting) diagram in figure 4 and as the con- 
sequence in (3). These represent that if an action by cell 
z (advancing the state of the SCA for cell z) is going to 
change the state of cell y, then the change in the state of y 
depends only on the states of z and ;y. In other words, the 
new state of ;y is a function of the previous states of z and :y. 
Without this axiom, if z changes ;y, it could do so by copy- 
ing everything from a third cell z into the SCA of y .  This 
would constitute an unspecified connection between z and 
y. The purpose of this axiom is to rule out such a connec- 
tion. 

Fiber,(MCAl) = Fiberx(MCA2) 3 

Fiber,(Next, (MCA1)) = Fiber,(Next, (MCA2)) 
Fiber,(MCA1) = Fiber,(MCA2) 3 (3) 

3.3. Kernel design choices 

This section describes design choices that were made to 
preserve the separation property, while permitting a rela- 
tively simple table-driven kernel implementation. The ba- 
sic concept for memory allocation is that a strand receives 
all of its memory resources when it is started (launched), 
and yields all of its memory resources when it terminates. 
Figure 2 shows a strand in operation, from Launch through 
Terminatestrand. 

At strand launch time, the strand is allocated the memory 
it requires, according to the strand memory requirements. 
These requirements are constant for that strand, in that they 
are the same each time the strand is launched. The strand 
receives two kinds of transient segments upon launching, 
message and non-message segments. 

:A',), I Y Y 

f: FiberNext z: Fiber, 
n: Next, ;y: Fiber, 

Figure 4. The second separation axiom 

0 Message segments are segments which have been sent 
by some other strand to the strand being launched for further 
processing. It is the existence of this message that caused 
the strand launch. 

0 Non-message segments are segments which are de- 
scribed by the strand memory requirements. 

The strand requirements describe the number and size of 
non-message transient segments required by the strand. As 
the strand executes, i t  undergoes interactions with the ker- 
nel, in this case by sending a message. If the strand elects to 
send some of its transient segments as part of the message, 
then access to these segments is lost at this point. Thus the 
strand can lose access to transient segments as it executes, 
but it cannot gain access to any more transient segments as 
it executes. 

The allocation of transient segments to strands obeys the 
following properties: 

0 Before strand launch, the strand has access only to the 
permanent segments of the cell. 

0 Transient memory requirements of the strand are a 
function of the strand, known at compile time. 

0 The kernel does not launch the strand until there is 
sufficient memory to satisfy the strand's requirements. 

0 Transient segments that are not message segments are 
zeroized before allocation. 

0 As the strand executes, it can lose memory segments 
(by send message), but it cannot allocate more segments. 

0 Strand termination causes all transient segments to be 
released by the kernel. 
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From these properties, the following conclusions can be 
drawn: 

0 After strand termination, the strand has access only to 
the permanent segments of the cell. 

0 Each time the strand runs, the amount of memory 
available is the same, as specified by the strand memory 
requirements. 

Because of these properties and their implications, the 
strand sees exactly the same amount of allocated memory 
each time it runs, and consequently, there is no flow of infor- 
mation caused by the amount of allocated memory while it 
is running. Thus, there is no covert channel stemming from 
the amount of allocated memory. This eliminates the typi- 
cal memory allocation covert channel that results from the 
ability of one process causing resource exhaustion, while 
another detects it. 

In general, kernel design choices were made to avoid sit- 
uations where cells and strands can deplete resources inter- 
nal to the kernel. There is still one case where the cells and 
strands can deplete a kernel resource. A send message could 
deplete the kernel schedule queue, so this is considered a 
fatal error. The kernel schedule queue must be engineered 
to be sufficient to handle the maximum number of strands 
scheduled for the maximum load of the application running 
on the kernel. 

4. MASK program overview 

The primary objective of the MASK project was to for- 
mally construct a separation kernel that could be used in the 
development of secure embedded systems. In an effort to 
formally construct such a separation kernel, the following 
major tasks were outlined and completed: (1 )  the specifica- 
tion of the separation property; (2) the development of an 
abstract description of the separation kernel; and (3) formal 
implementation of this abstract description. 

The first step was spec$cation of the separation prop- 
erty This work began by considering typical operating sys- 
tem concerns such as how to handle registers, devices, tran- 
sient memory, permanent memory and so on. These con- 
cepts were clouding our thinking about separation. Indeed, 
the many operating system details were threatening to lead 
to the formulation of a separation property that was tied to 
a particular operating system. Such a separation property 
might miss an important aspect of separation, or be so tied 
to a particular implementation that it could not be reused 
on even slightly different systems. In addition to avoiding 
the complicating details mentioned above, the objective of 
establishing with a high degree of certainty that our end sys- 
tem satisfied the separation property made it clear that the 
simplest formulation of the separation property was needed. 
Consequently, separation was considered in the abstract, in 
a way that would apply to separate channels, separate fre- 

quencies, separate accounts, etc. The result of this endeavor 
was a very short specification of the separation property 
that can be applied to any sort of system where separation 
is a concern, such as operating systems, radio frequencies, 
plumbing, etc. 

The second step was an abstracr,descriprion of the sep- 
aration kernel. During the process of specification, the dis- 
covery was made that the step from an abstract specifica- 
tion of separation to an implementation level specification 
was too large of a step. What was missing was a specifi- 
cation of what services the kernel would offer to the user 
mode processes. This specification details the view of the 
world offered to each process. The view of the world in- 
cludes direct access to resources, such as memory and reg- 
isters, and indirect access to resources, such as the ability to 
send a message. If the kernel does something internally to 
its resources that makes it impossible for a process to send 
a message, then the kernel is in danger of implementing a 
covert channel, because the process could detect something 
about the kernel state by its ability to send a message. This 
specification details how each service offered to the user 
mode process affects the view of the world given to the user 
mode process. The specification was very valuable because 
the software designers could begin to design their software 
based on the interfaces detailed in this specification. The ab- 
stract description of the separation kernel was a refinement 
of the separation property, in that the separation property 
must be implied by this specification. 

The final specification step was the formal implementa- 
tion of the abstract description. Given the specification of 
the services to be provided, the implementation level spec- 
ification details the data structures and algorithms used to 
build the kernel. For example, a priority queue was spec- 
ified to implement the scheduling provided by the kernel. 
The formal implementation of the abstract description is a 
refinement of the abstract description of the separation ker- 
nel, in that it supports the services as specified, and has no 
other “features” besides those services. 

There were two main sources of changes to the specifi- 
cations. The first source of changes was requests for addi- 
tional or extended services. One team was using the kernel 
to support the smartcard development. The concern for the 
smartcard team was to separate smartcard applications. For 
example, if two different credit card companies have a credit 
card application on the same smartcard, then neither wants 
to trust the other to interfere with their operations. Thus 
strict separation between these applications is important. As 
progress was being made, the team building the Advanced 
INFOSEC Machine (AIM) cryptographic processor began 
building their software. The main concern for AIM was es- 
tablishment of separate cryptographic channels. Each chan- 
nel might have data at a different security level, using dif- 
ferent cryptographic algorithms. The AIM team had some 
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additional requirements for MASK. For example, to support 
AIM a processor version of the remote procedure call (WC) 
mechanism between the separated processes was built. 

Because of the hierarchy of specifications in three lay- 
ers, when a new or extended service was considered, con- 
sideration was first given to whether the service could be 
implemented in accordance with the separation property. 
In addition, consideration could be given to how much im- 
pact the service would have on the existing implementation 
level specifications. By playing these two considerations off 
against each other, services could be provided that would 
support both the smartcard and AIM projects, that would 
embody the principle of separation, and that could be im- 
plemented economically. 

A second source of changes came from the fact that 
the bottom layer specification was hand translated into C 
code, a formal implementation of the abstract description. 
When the coders took their hand to the design, they often 
found more efficient ways to implement the kemel, in terms 
of both memory and time. When such a design improve- 
ment was suggested, consideration was given how to mod- 
ify the specifications to match the proposed change, and if 
the change could still establish the kemel as a refinement 
of the abstract description of the separation kemel. Note 
that the abstract separation property does not enter into the 
decision, because the abstract description of the separation 
kemel already embodies the separation property. By show- 
ing that the abstract description is still valid, it is shown that 
the separation property is preserved. 

the desired system, so it  is more akin to an axiomatic defi- 
nition of a mathematical structure such as a group or a j e l d  
than it  is to a specification of a piece of software. It specifies 
only the separation properties of the system. It is extremely 
under-specified in the sense that there are many systems, 
other than MASK, which could satisfy this specification. 

5.2. Multiple cell abstraction specification 

The multiple cell abstraction (MCA) level specification 
details how the MASK kemel shall meet the separation 
specification, i.e. this specification instantiates the separa- 
tion specification. The design choices of MASK are made 
in this specification, and in the refinement of separation to 
MCA, as described in section 3.3. 

The MCA specification is built from the Single Cell Ab- 
straction (SCA), which formally details how a cell, strand, 
segment, etc. behave, as informally described in section 3. 
It then formally describes what happens to a system com- 
posed of many cells. It serves as the basis for a descrip- 
tion of the kemel to application programmers building cells 
and strands to run on the kemel. It describes precisely the 
semantics within a cell. The kemel calls available to the 
programmer are described in thorough detail. The assem- 
bly language instructions available to the programmer are 
described only in terms of the segments, e.g. the execution 
of a load operation will affect the registers of the cell, based 
upon the memory segments of the cell. 

5.3. Kernel specification 
5. Formal methodology 

SPECWARE, under development at Kestrel Institute in 
Palo Alto, California, is an environment for the specification 
and formal development of software with its primary objec- 
tive being the correct development of entire systems. It is 
the mechanism which enables builders to organize build- 
ing blocks, i.e., specifications, into a purposeful whole. It 
achieves this goal by incorporating ideas from mathemati- 
cal logic which help to integrate several notions in software 
engineering. More specifically, SPECWARE provides for the 
formal composition of specifications and software compo- 
nents and the refinement of specifications to code. 

The major specification layers and refinements used for 
the MASK development took place at three levels, the sepa- 
ration level, the multiple cell abstraction level, and the ker- 
nel level, as discussed in section 4. 

5.1. Separation specification 

The separation specification is a type of specification that 
may be less familiar to software designers. As highlighted 
in section 3.1, it specifies only mathematical properties of 

The purpose of the kernel specification is to detail the 
actual data structures and algorithms used to construct the 
implementation of the kemel. Thus while the MCA is an 
application programmer view of the kernel, the kemel spec- 
ification is the kernel implementor's view. 

5.4. MCA to kernel specification refinement 

The refinement of the MCA specification to the ker- 
nel specification is primarily a matter of data structure re- 
finement. In the MASK implementation level specifica- 
tions, the scheduling is accomplished by means of a priority 
queue. As shown in figure 5, the multiple cell abstraction 
layer version of the priority queue, called schedule map, is 
built from a total mapping from priority to a list of mes- 
sages. Message further decomposes into a quadruple, con- 
sisting of a source strand, target strand, command word, and 
a list of message segments. A message segment list is a 
list of transient segment IDS (TSID). Thus, a priority queue 
specification gets built from many specifications: Lists, to- 
tal maps, quadruples, TSID, strand ID, etc. In the schedule 
map specification, all of these component specifications are 
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Index 

Figure 5. Priority queue refinement 

combined, and this combination is then extended with the 
particular functions that implement the scheduling mecha- 
nism of the kernel. 

At the kernel layer, the specification hierarchy for pri- 
ority queue is similar, as shown in figure 5. The main dif- 
ference is in how a message is represented. At the MCA 
level, the cell wishes to be able to see the components of 
the message. At the kernel level, the message is represented 
by the message ID. In the kemel, the contents of the mes- 
sage are found by using the message ID to index a message 
map. The message map, not shown in the figure, is a kernel 
implementation detail not visible at the MCA layer. If the 
message map were visible at the MCA layer, then it is likely 
that covert channels could be implemented using the mes- 
sage map. Keeping such implementation details invisible is 
important in the design of the kernel, and in the specifica- 
tions and refinements used to build the kernel. 

Software development is accomplished in SPECWARE by 
refining one specification into another. Refinement is a pro- 
cess in which all the elements of one specification are repre- 
sented in terms of another [4]. As shown in figure 5, where 
dashed arrows represent refinement and solid arrows repre- 
sent composition, the priority queue can be refined into a 
map of lists. Each element of the map corresponds to one 
of the system priorities. The use of a map makes it easy 
to search from the highest to the lowest priority in the pri- 
ority queue. Each entry in the map is a list maintained in 
First In First Out (FIFO) order. Each message can be a 
structure of four elements (source strand ID, target strand 
ID, command word, and message segment list). At the cell 
level, once a message is delivered to a cell, the cell can di- 
rectly reference the components of the message, such as the 

source strand ID, to determine which cell sent the message. 
When the delivery of the message is mapped down to the 
kernel specification, the kemel must first look up the mes- 
sage in the message map, and then make the components 
of the message directly visible to the receiving cell. When 
the cell is scheduled, the kernel in fact looks up the mes- 
sage and places the contents of the message on the stack of 
the scheduled cell. The cell can see that the contents are 
on its stack, but the cell knows nothing of the message map 
that is used by the kemel. The refinement specifies how the 
cell’s view of messages is mapped down to the particular 
implementation chosen for the kernel. 

6. MASK review 

The review of the SPECWARE MASK kernel specifica- 
tion to C code implementation required a comparison be- 
tween each sort, operation, and axiom of the MASK kernel 
specification and the corresponding C code implementation. 
The specifications are arranged in the three levels, separa- 
tion, multiple cell abstraction, and MASK kemel. In addi- 
tion, the C code implementation forms another level to be 
reviewed. The separation level is simple, describing separa- 
tion in abstract terms. The multiple cell abstraction (MCA) 
level is complex, combining many small specifications into 
the MCA specification to detail the behavior of a process 
from the point of view of a cell. The MASK kemel specifi- 
cation is the most complex, detailing how the MASK kernel 
implements the MCA level. 

In addition to these levels, there are also basic, shared, 
and kemel primitive specifications. The basic specifications 
are domain independent specifications such as map and list. 
These specifications can be thought of as the basic building 
blocks upon which any development might be built. The 
shared specifications are domain dependent and are used 
across multiple layers of the specification, usually in the 
MCA and MASK kemel layers. For example, much of the 
priority queue specification can be shared between the two 
layers. The MASK kemel layer incorporates the detail of 
how the priority queue is implemented, but the behavior of 
the priority queue in terms of scheduling algorithm is invisi- 
ble at the MCA level. Finally the kemel primitive specifica- 
tions are the domain dependent specifications upon which 
MASK was built. Examples of kernel primitive specifica- 
tions are send and launch. The launch primitive describes 
how a strand is started, and the send primitive describes how 
messages are sent between strands. 

6.1. Specification review-MCA 

This review focused on the Multiple Cell Abstraction 
(MCA) specification. The MCA is a collection of single 
cell abstractions, where a single cell abstraction defines the 
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view of the world of a single cell. Therefore, the MCA em- 
bodies the collection of all cells in the system. 

The main finding of the review at the MCA level was that 
the MCA should be defined in a functional manner. The first 
draft of the MCA specification defined the cell abstractions 
in terms of their properties only, rather than as functions. 
For example, prior to launching a strand of a cell, the prop- 
erties state only that the resources required by that strand 
are visible (allocated) to that strand. When these proper- 
ties were replaced by a functional definition, a function was 
specified to explicitly construct the lists of resources. Using 
functional definitions brought two important points to light: 

0 Executability: The functional definition of the MCA 
level primitives raises the possibility of having a functional 
model of MASK without the MASK implementation level 
specification. This can be useful in determining whether the 
kemel is robust enough to support the project objectives. 

Totality: Though not strictly required, all of the func- 
tional definitions were made total. While if it can be shown 
that a function is never called with certain arguments, then 
the function need not be specified on those arguments, hav- 
ing these partial functions makes the specification harder to 
review, since the question always arises “What will happen 
if the function is called with those arguments?’. 

6.2. Refinement review-MCA to MASK kernel 

The MCA to MASK kernel refinement provides an av- 
enue for representing sorts and operations at the cell level 
as sorts and operations at the kernel level. The actual re- 
finement is built of three specifications and the relationships 
between these specifications. The specification MCA-AS - 
MASK-KERNEL is developed and acts as mediator between 
the MCA and MASK- KERNEL specifications. This develop- 
ment is done in large measure by writing cell operations in 
terms of kemel operations. Having a functional definition 
(with no partial functions) made the refinement from MCA 
to MASK-KERNEL easier to specify. In short, the less de- 
tailed functions at the MCA level are mapped to the more 
detailed functions at the MASK kemel level. 

6.3. Specification review-separation 

This review focused on the separation specification. The 
separation specification incorporates several operations and 
constraints on the interactions of cells. It remains strictly 
abstract, specifying properties and not functions. This is 
appropriate because it is intended to apply to many systems, 
not just MASK. 

6.4. Refinement review-separation to MCA 

The final aspect of the review was that of the refine- 
ment of Separation to Multiple Cell Abstraction. The com- 

ponents of this refinement, SEPARATION-AS-MCA, acts 
as the mediating specification between SEPARATION and 
MCA. The focus of this review was to ensure that each oper- 
ation provided to cells by MASK maintains the separation 
property between cells. A major purpose of the MCA level 
is to make this refinement easier. Because the MCA level 
details the effect of each operation on the resources that are 
visible to cells, the separation property for each type of re- 
source can be stated in the MCA level, and the maintenance 
of those properties can be checked. 

6.5. MASK kernel specification to code-details 

Several changes were identified in the MASK-KERNEL 
specification to code review. The change to using both total 
functions and functional specifications was found to help 
here, since it is much easier to review a functional defini- 
tion against the code than the specification of properties. 
The functions in the MASK- KERNEL specification corre- 
spond one to one with functions in the C code. Some of the 
changes identified were: 

Kernel Truce: The specifications require a kemel 
trace, i.e. a log of the kemel calls made by the cells. The in- 
tent was that the trace be of assistance when the applications 
required debugging. The debugger could view the sequence 
of kemel activities, resulting in information about what was 
going on in the system before the error occurred. Future 
versions of MASK are envisioned in which the kemel trace 
can be retrieved by a system administrator to assist in re- 
mote debugging of systems. One project was resistant to 
putting in the kemel trace, because of the perceived perfor- 
mance hit. The kemel trace was put in, and proved useful in 
development of the applications hosted by the kemel. The 
lesson is that even real time, performance critical applica- 
tions should have trace capabilities in the delivered system. 

Kernel Tampering: The code had several checks of 
the “this should never happen” variety. The specification 
did not have these, since in the mathematical world, such 
events are indeed impossible. However, MASK may be im- 
plemented on hardware that does not offer good protection 
against hardware faults. While tampering with MASK by 
the application code is not possible in the delivered system, 
such tampering is possible in the development environment, 
so these checks prove useful in the development of appli- 
cations on MASK. The MASK-KERNEL specification was 
modified to reflect these error conditions. 

Code Errors: A few code errors were found. For 
example, it was discovered that one cell could pass inter- 
rupt handing responsibilities to another cell, forming a type 
of communication channel while the specification required 
that interrupt handling responsibilities for a given interrupt 
always remain within a single cell. Naturally, the code was 
updated to have this restriction. 
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7. Success story 

The MASK kemel is now executing on board the AIM 
chip, which is being incorporated into many Department of 
Defense (DoD) projects, such as the KOV 20 key manage- 
ment system for the F22 fighter aircraft, the Defense Mes- 
sage Radio (DMR) for naval communications, and others. 
Based in part upon the MASK technology, the AIM chip 
has been certified for Type- 1 cryptographic applications. 
MASK has also made clear the relevance of the SPECWARE 
technology to Information Security (INFOSEC) applica- 
tions such as AIM. The use of the composition and refine- 
ment operations was crucial in our efforts to clearly state 
the separation property, and refine it  into a usable kernel. 
MASK has proven efficient enough to support the applica- 
tions of AIM to date. This includes being small enough to 
fit in the very limited on board ROM of the AIM chip. 

8. Future work 

Krenz [6] is an architecture that can provide higher grade 
security to COTS platforms such as NT, Linux, or Unix. 
The Krenz architecture builds on the separation concept de- 
veloped under the MASK program. It extends the concept 
by requiring that a specified filter be applied to information 
flowing between any two cells. 

The basic architectural concept of the Krenz is to permit 
COTS platforms to operate in the information processing 
modes specified by the organization, and to have the plat- 
form enforce the filters between the information processing 
modes. One conception of a COTS platform, from a secu- 
rity perspective, is depicted in figure 6. Within this figure, 
the COTS platform is pictured as a whirlwind of activity that 
is beyond the control of any serious security enforcement. 

A COTS platform is pictured as our of control for the 
following reasons: 

0 It includes millions of lines of code. Such large bod- 
ies of code are beyond analysis. 

0 It is frequently compromised, as witnessed by the se- 
curity advisories released by the Computer Emergency Re- 
sponse Team (CERT). 

0 It is frequently updated, with new versions of system 
features, patches to bugs, and even patches to address the 
CERT advisories. 

0 Applications on it  are frequently updated. 
0 It is frequently exposed to the Internet, and the hack- 

ers and viruses that lurk there. 
The first architectural concept is to bound the COTS plat- 

form. In figure 6, the COTS platform remains a whirlwind 
of activity, but the whirlwind is constrained inside a box 
comprised of several boundary components. These com- 
ponents regulate the interaction of the whirlwind with the 
world around it. Since they can be brought under control, 

Leak Filter 

Filter 

Figure 6. Information flow restrictions 

assertions can now be made about the flow of information 
into and out of the whirlwind, but not about what happens 
to the information inside the whirlwind. 

Given that the whirlwind can be contained, then it can 
be constrained to follow the organization’s flow restrictions. 
If the whirlwinds were not contained, few assertions could 
be made about the flow of information between modes. 
The model of processing shown in figure 6 is often imple- 
mented by having two physically separate COTS platforms, 
on physically separate networks, with written policies con- 
cerning what can be transferred between the platforms. This 
is a valid implementation of the Krenz concept. 
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